Propeller blades work like wings on an airplane. Wings carry the weight of the plane by providing lift; marine propeller blades provide thrust as they rotate through water. If an airplane wing were symmetrical (air moves across the top and bottom of the wing equally), the pressure from above and below the wing would be equal, resulting in zero lift. The curvature of a wing reduces static pressure above the wing — the Bernoulli effect — so that the pressure below the wing is greater. The net of these two forces pushes the wing upward. With a positive angle of attack, even higher pressure below the wing creates still more lift.
Similarly, marine propeller blades operating at a zero angle of attack produce nearly equal positive and negative pressures, resulting in zero thrust. Blades operating with an angle of attack create a negative (lower or pulling) pressure on one side and a positive (higher or pushing) pressure on the opposite side. The pressure difference, like the airplane wing, causes lift at right angles to the blade surface. Lift can be divided into a thrust component in the direction of travel and a torque component in the opposite direction of prop rotation.
Prop Slip
Slip is the difference between actual and theoretical travel through the water. For example, if a 10-inch pitch prop actually advances 8-1/2 inches per revolution through water, it is said to have 15-percent slip (8-1/2 inches is 85% of 10-inches). Similar to the airplane wing, some angle of attack is needed for a propeller blade to create thrust. Our objective to achieve the most efficient angle of attack. We do this by matching the propeller diameter and blade area to the engine horsepower and propeller shaft RPM. Too much diameter and or blade area will reduce slip, but at a consequence of lower overall efficiency and performance.
Calculating Rotational Speed, Blade Tip Speed and Slip
Our propeller engineers study props at the 7/10 radius (70% of the distance from the center of the prop hub to the blade tip). The 7/10 radius rotational speed in MPH can be calculated as follows:
Forward speed is shown by an arrow in the direction of travel. The length of the arrows reflect speed in MPH for both the measured speed and the theoretical (no slip) forward speed.